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For a number of years, simulated long wavelength infrared (LWIR) signatures have

been used to determine the ability to classify militarv targets and decoys. Such

signatures sometimes exhibit specular behavior, a characteristic displaying a

- sudden increase in radiant intensity of short duration. This specular behavior is

- sporadic and is as likely to show up for targets as it is for decoys.
Unfortunately, if these outliers (i.e. the specular occurrances) are not removed

~from the data, the estimated performance of discrimination algorichms can be

f misleading. Statistical outlier detection provides a useful approach for finding
and removing the outliers caused by specular occurrences.
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Abstract

For a number of ycars, simulated long wavelengih infrared (LWIR) signatures have
been used to determine the ability to classify military targets and decoys. Such signatures
sometimes exhibit specular behavior, a characteristic displaying a sudden increase in
radiant intensity of short duration. This specular behavior is sporadic and is as likely to
show up for targets as it is for decoys. Unfortunately, if thesc outliers (i.c. the specular
occurrences) are not removed from the data, the estimated performance of discrimination
algorithms can be misleading. Statistical outlier detection provides an useful approach for
finding and removing the outliers caused by specular occurrences.

This paper considers the statistical properiies of the outlier detection algorithms as
applied t0 simulated LWIR signatures. We consider possible statistical models for outliers in
order to determine whether or not modifications might minimize the number of outliers left
in the signature after editing and minimize the number of “good” obsecrvations deleted from
the signature. Ultimately, we are seeking the data editing algorithm which produces the

best possible discrimination performance-
1. Introduction

A small number of outliers in a data set can have a large influence on analyses done
with the data. This is particularly true when the sample size is small and the number of
variables is relatively large, as is often the case in real world problems. In such multi-
variate situations, outliers may not be easy to detect or define (i.e., What distance measurc -
should be used to define an extreme observation?). Muitipie outliers tend to mask cach other.
making detection more difficult. When standard regression analyses are run, the presence
of an outlier may not be apparent in the residuals even though their presence has had a
large effect on the values of the regression parameters. In recent years it has been shown
that even a single outlier can affect the collinearity structure of the regression variables
(e.g. see Chatterjec and Hadi (1988) and Walker (1989)).

- This work was supported in part by contract number 90NM110 with the Air Force Office ot Scientific
Research, Bolling Air Force Base.
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In time scries analysis it has been shown (sce Chemick ct. al (1982) for example) that
outliers can make it appear, based on white noisc tests of residuals, that a scrics s mercly a
white noisc process when in fact it is rcally a contaminated first order autorcgressive
process. This points to a gencrai problem, namely that outliers can hide thc correlation
structure in a time scrics. This correlation structure is crucial for model identification.

Gnanadesikan (1977} pointed out that Hampel's influence function (Hampel (1974))
can be wused to estimate the cffect individual outliers have on sample cstimates of
parameters. Chemick noted that the influence function for parameters of interest (o the
uscrs of a data base provides a way of defining which outliers are important (ic.,
observations with large estimated influence on parameters of interest to users arc
important outliers, while those with small estimated influence are not). In this way the
influence function provides a "distance™ measure for multi-variate outliers. This approach
was applied by Chemick to the problem of data validation for the Dcpartment of Encrgy daia
bases in Chemick et al. (1982) and Chemick (1982a) and was continued as an approach to
data editing in Chemick and Munhy (1983).

Recently some important practical work has been done by Lefrancois (1991)
following up on the use of influence function measures in time series, first proposcd in
Chernick et al. (1982). His methods are considered in this paper. Earlier work following up
on Chernick et al. (1982) are Lattin (1983) and Li and Hui (1987)

2. Detecting Specular Type Outliers in Signature Data

Infrared (IR) measurements arc used by the military to help ilentify unknown
targets that may have been sent by the enemy. Specific features of each IR time-series help
to discriminate and classify the unknown targets automatically. Outliers in the time-series
corrupt the estimation of these features and, if the corruption is bad cnough, will cause the
discrimination algorithm to reach wrong, or dangerous, conclusions. A computer outlier
detection algorithm is necessary since the signals are coming in “"real-time™. Even though a
human may be able to do a better job of outlier detection, he would be too slow to sort out
the large number of possible time-series soon enough to use the information.

At Nichols Resecarch Corporation therc has been a significant amount of work donc
in recent years evaluating the performance of classification algorithms for the Strategic
Defense Initiative (SDI) targets using simulated long wavelength infrared (LWIR) and laser
radar (ladar) signatures. Specular behavior in the LWIR signature (a particular type of
outlier in signatures), which is characterized by sudden increase in radiant intensity of
short duration, occurs infrequently and sporadically in the simulations.

It is somewhat controversial whether or not these phenomena are arnifacts of the
Optical Signatures Code (the standard code used to simulate LWIR signatures) or represent
real effects that an LWIR sensor would observe. In ecither case, due to their sporadic
occurrence, these outliers could not be expected to provide useful information for
discrimination and hence editing procedures for the detection and removal of specular
observations had been routinely included in discrimination studies.

When an IR sensor is based in space, looking at a target in space, there is very litlle
background radiation to corrupt the [R measurements from the target. Changes in IR
intensity from the target can aid in describing the target, (see Figure 1). Many differem
features of IR signatures have been proposed to help discriminate and classify targets. The
underlying physical parameters tend to be things like thermal mass and shape. There arc
more proposed features than can be adequately covered in a paper on outliers. All of the
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featurcs have the common problem that outliers will corrupt the feature cstimation,
particularly if the lcast squares mecthod is used. This problem is compounded in IR
measurcments because the underlying physical model describing the timce-scries s
unknown, or is sometimcs purposcfully perturbed by the cncmy.

Infrared Intensity

Figure 1) IR time-series is a scquence of IR measurcments from a target that is moving,
changing oricntation and be subjected to a changing thermal load.

In a recent discrimination study for the Air Force Space Systems Division, we found
that some preliminary results were misleading due to the presence of some specular data in
our limited signature data base. Although an outlier removal routine had been applied (o
these signatures, not all of the specular data was removed. The remaining specular data had
a significant impact on the preliminary performance results. J. Magnuson and M. Chemick
devised an outlier removal routine based on the influence function for the variance of
intensity. Unique features of the algorithm include the initial use (after detrending) of the
middle 50% of the data and the adding back of observations with small 1o moderate
influence. This avoids the masking problem. Empirically, the method appears to be effective
since it removes the outlicrs without creating many "false alarms" (i.e., identifying valid
observations as outliers). Preliminary work has been presented as a coatributed paper at
the annual meeting of the Institute of Mathematical Statistics in Washington D.C in August
1989 (Chemick and Magnuson (1989)).

This paper reports on the statistical properties of outlier detection algorithms based
on the use¢ of influence functions when specular behavior is present. We also consider one
robust time series method due to Roussceuw and Leroy (1987). Other approaches, such as

Fox's test (see Fox (1972)) seem to suffer from the masking problem and are too sensitive to °

the detrending algorithm. We developed and tested these algorithms using simulated LWIR
signatures. Currently we have a rcasonably large data base of signatures for a variety of
targets available. The methods used in Chemick and Magnuson (1989) are studied from the
theoretical point of view. In particular, thresholds which were adjusted based on simulation
results can be studied in the context of assumed probability models. Since observations are
added back sequentially based on their ranking of intensity after detrending, recent
developments in repeated significance testing and nonlincar renewal theory as developed
by Woodroofe, Siegmund and Lai over the past 13 years are considered (see Sicgmund (1985)
and Woodroofe (1982) for details regarding this theory). Unfortunately due to the
complicated nature of our algorithm, current theory only can be applied to partial sums in
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onc-paramcter cxponential families. It can therefore be applied to CUSUM tests but not 1o
our sequential influence fuaction algorithm.

Hampel's influence function was designed f{or observation vectors which arc
indepcndent and identically distributed. The signature data we considered arc corrclated
over tlime and are non-stationary. By removing the trends in the scrics we have removed
the non-stationary bchavior of the serics. Trend removal is imponant and difficult when
outliers are present. We compare various approaches. Proper trend removal is important
since all the outlicr detection algorithms depend on the time scries being stationary.
However the detrended scries may still exhibit correlation and the methods applicd to both
the specular data and the closcly spaced object (CSO) .problems have thus far not taken this
into account. In recent yecars Martin and his collcagues have looked carcfully at the
problems of parameter estimation and outlier detection for time scries data. In particular
they have defined influence functions which they belicve are more appropriate for the
detection of outliers in time se¢ries (Marntin @ and Yohai (1986)). We have investigated the
correlation structure of the detrended series. To date it has been difficult to find ways to
make these generalizations practical. Lefrancois (1991) provides practical tests using
empiric influence functions which we compare to our methods.

3. Editing Data with Closely Spaced Objects.

In strategic defense studies the surveillance sensors may not have the capability to
resolve objects as carly as would be desirable. Data from unresolved objects however may
still be useful for tracking and discrimination. Depending on the sensor characteristics, the
scenario for the deployment of targets and decoys and the sensor location, objects may, at
various times, be unresolved. If signature intensities from two or more objects cannot be
separated, the sensor will combine their intensitics. If such data points are included in the
signature, the track file can be so distorted as 1o severcly degrade or destroy the
discrimination performance. Onec remedy is to detect the times at which the track file is
corrupted by multiple objects, to then remove these corrupted points (called CSOs for closely
spaced objects) and discriminate on the basis of the remaining points. In recent work at
Nichols Research Corporation, we have found that, for the scenarios we considered, some
discrimination capability is still possible even though the simulated track files were often
corrupted by CSOs. Qur cditing algorithms were based on the use of influence functions
applied in an iterative fashion. Although the problem was similar to the specular data
problem, there were some differences in the characteristics of the outliers (e.g. a much
larger percentage of contamination for the CSO problem), the performance requirements
and the necessary modifications used to get the algorithms to work properly. Again the
statistical characteristics of the algorithms have not been studied. It would be a worthwhile
research effort to look at the statistical properties of these algorithms when applied to
signature data with closely spaced objects with an approach similar to our previous studies.
Unfortunately, we did not have time to consider this in the current study.

4. Repeated Significance Tests

Our sequential outlier test will reject an observation as an outlier or specular
occurrence if the observation, say Xj has a large influence on the variance of the detrended
data which includes the i-1 observations from the middle of the detrended series and
additionally those with the smallest influence on the variance. The decision criterion is,
for fixed N (in our case N=61) to reject the first observation i as an outlier if
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where C is a given threshold, —)_(_(',.1) is the mcan of the middic 50% of the dctrended

obscrvations plus any additional ones which have been added back and S(ZM) is the variance
of the same i-1 obscrvations.

This is a sequential hypothesis test where the test procedurc is applied for scveral
.values of i. The threshold C can be constant or it can vary with N. If the test were to be
applied for just one value i, it is usually straightforward to pick a value for C to control the
type I and type Il errors. However since the test is rcpeated for scveral values of i, the
choice of C is more difficult.

The theory of repeated significance testing addresses this issue of  choosing a
threshold C. We hoped that the theory would be sufficiently general to be applied to our
test. Unfortunately the theory is not sufficiently general and does not appear to be casy to
extend to cover our problem. It may however still ment further study.

We bricfly describe the theory of repeated significance tests and discuss the level of
generality of the existing theory. For a more thorough description, the reader should
consult Sicgmund (1985) or Woodroofe (1982).

In the simplest setting we have n independent Gaussian random variables cach with

mean M and variance G2 (denoted as N(p,02)). Let X1,X2,...Xn represent these n random
variables. Define

Now Sp/vii  has the Gaussian distribution with mean |l and variance o? (denoted N(+vfi p,02)).

Suppose that we want to test the hypothesis that p=0 versus the altermative p # 0.

From tables for:the standard normal distribution (denoted N(0,1)) we have for fixed n
and for 62 known

P{IS,l > 3ovn] = .0026 if u=0, -

since when W =0, S/ = N(0,62) or Sp/(¥iic) = N(0,1).

Let the threshold C, be 30+. If this threshold is exceeded for fixed n by |Sal then we
have strong evidence for rejecting u = 0.

However, supposc we just continue to take observations uatil we find an n such that
|Sal> 30vii. This amounts to a sequential rule with stopping time

t=inf{n>1:]S.| > 30¥) .
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However, from probability theory, the law of the itcrated logarithm (clls us that

limsup  Sa-nu

n—o dY¥2nloglogn

=1 with probability 1.

So cven foru =0

(—,S:/l;‘;will, with probability one, be of the order Y2loglogn for some n (actually for

_infinitely many values of n) which is cenainly eventually bigger than 3. So thc probability
under the null hypothesis of ever finding such a t is 1.

Repeated significance testing amounts to choosing a maximum sample sizc N and
rejecting the hypothesis that u = 0if{Sy{>c OVl for some n < N. The probability of a falsc

rejection a‘:P{|Sn|>codﬁ. forsomcnSN). The choice of ¢ is made to control a®. The

theory of repeated significance testing amounts to approximating a* and related quantitics
for given threshold values c. The theory can be applied to one-parameter cxponential

familics (a more general class of distributions than just the N(u,0?) with 6% known)

With our influence function test, we have something like a repeated significance
test. Things are much more complicated since we arc dealing with a functional of the middic
order statistics. However, since we add back observations and repeat testing the issue is the
same. How do we determine a threshold which controls our probability of treating a “"good”
observation as a specular occurrence? Note also that the costs of the two error types are not
necessarily the same. If we throw away a "good™ observation, the cost is somec loss of
information regarding the feature estimates. On the other hand if we accept a "specular”
occurrence, we are distorting the signature with potentially disastrous effects.

Although the determination of the threshold appears to be intractable with existing
theory, bootstrap procedures as applied to hypothesis testing problems may provide a way to
determine appropriate thresholds based on the data at hand and weak distributional
assumptions. For a good up-to-date reference oan bootstrap procedures in hypothesis testing
problems sec Fisher and Hall (1990).

5. Influence Functions

Hampel defined influence functions to measure the quality of robust estimators. |

Although the idea goes back to his 1968 Ph. D. disscrtation, the most common reference in_
the literature is Hampel (1974). Implicit in the definition is the assumption that the
observations are independent and identically distributed from a distribution F. In Hampel's
definition the influence function depends on a point in the observation space usually taken
to be a particular observation, the parameter being estimated cxpressed as a functional of
the distribution and the distribution F itself. The general theory as applied to robust
statistics is covered in Hampel et al. (1986).

For example, the variance 62 of a uni-variate distribution F can be expressed as a
functional of F denoted by T(F), where i is the mean of F and
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T(F) = ] (x-uf? dF .

In gencral the influence function is defined as a type of dircctional dernivative of the
functional in the space of distributions.

Let I(F.T(F).x) denote the influence function at the point x for the functional T(F)
with distribution F. Definition:

lim T{(1- €)F + €d;) - T(F)
-0 €

I(F,T(F).x) =
€

where € is a positive real number and 8y is the distribution with all its probability
concentrated at x. The distribution G = (1 - €)F + €8x is a mixture distribution which is “close”
to F for small €. This definition is quite general and applies to bivariatc and multi-variate
distributions F as well as the uni-variate distribution we are considering in this discussion.

Influence functions are similar to derivatives of functions and rctain many
propertics from calculus, including the product rule, the quotient rule and thc chain rule.

From the above decfinition, we shall derive the influence function for the variance.
Many other influence functions have been given in the literature. Gnanadesikan (1977)
gives the influence function for biveriate correlation which he attributes to Mallows in an
unpublished paper. See Chemick and Murthy (1983) for some other simple examples.

Now we consider I(F,T(F),x) for

T(F) = f (y-ny dF(y)

I(F,T(F),x) = lim ° M where
£€—-0 €
T@G) = I (y-m) dG(y) and m =] y dG(y) .

First m=f y dG(y) =J (1-e) y dF(y) + ex = (1-€)u + &x

- —ot

~
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so T(G) =[ (y - (1 - &)t - €x)? dG(y) =[ (y - 4 - €(x - u))? dG(y)

- -

=(1-€) f [ty - 2 - 26y - W(x - 1) + €2x - ] dFCy) + €[(x - 2 - 260x - 2 + €2x - w7

B

So T(G) - T(F) =

e(x - w2 (1-2e+€?) € ]

-an -

Since f (y - u) dF(y) =0. we simplify to obtain

R

T(G) - T(F) = e(x-P)%(1-2e+€2) - € 62 + (1-e)e(x-p)'

Noting that 02=j (y - u)? dF(y) andf dF(y) =1

e -

Dividing by € yields

T@G) - FF) _

- (x-p)X(1-2e+€2) -a? + e(1-€)(x-p)?

= (x-p)X1-¢) - o

Now taking the limit as £ approaches 0 we have

lim T(G) - T(F)

= (x-p)? -2
£-0

This shows that the influence function for the variance

(y - w)?dF(y) + “”E)j [€3(x - w)? - 2e(x-p)(y-)} dF(y)

(n

depends on x but only

depends on F through p and c2. The derivation applies to any distribution F with finite

second moments. .

Magnuson & Chernick

8




Simple formulas such as (1) above arc useful in spproximating the influence
function when the paramcters p and o2 arc unknown. We simply rcplace them with their
sample cstimatcs. Hence an cmpirical cstimate of the influcnce function for the vanance a
X would be

I[{Xx-Xp-s?

where X is the sample mcan and S? is the samplc variance.

The influence function has a very uscful interprctation. Suppose that we replace X
with the obscrvation X; and replace F by F; | the cmpirical distribution (ic. the
distribution with probability 1/(n-1) on cach obscrvation). For large n, Fp.1 approximates F
and we can take € = 1/(n-1) since 1/(n-1) is small. We sce then that

TG) = TEL Foq + 1 80) = T(Fn)

So

T(G) - T(Fp.1) _ T(Fp) - T(Fn.1)
£ (_L
n-1

= (0-1)(T(F-T(Fn-1))

Now T(Fn) is the sample variance whea X is included and T(Fn.)) is the sample variance
when X; is excluded. So the influence function approximates the difference between the
estimate with the observation included and with the observation excluded muliiplied by the
sample size. With this interpretation we sece that the influence function is a very appealing
sensitivity measure of the effect of an observation on the estimate. Such measures are
useful in determining outliers with respect to particular parameters of interest (in this casc
the variance).

Strictly speaking thesc results apply only to independent and identically distnbuted
observations, but we have found them to be useful in practice even when the observations
are corrclated (c.g. Chemick et al. (1982) and Chemick and Magnuson (1989)). Marin and
Yohai (1986) have gencralized Hampel's definition to time series data and Lefrancois (1991)
uses some practical and ecasily computable forms of influence functions which have a
similar appealing notion of sensitivity of the estimates to the observations.

The sequential influence function outlier detection algorithm simply divides by o 10

remove any scale dependence in setting a threshold. So instead of using (X;-XP-S%and
comparing it to a threshold C, we use

(X - XP

SZ

and compare it to a threshold C. In our case, the detrending algorithm is applied first and

the middle 50% of the detrended observations are used to initially estimate p and o2. This is
done to avoid masking duc to estimate sensitivity to outliers.

Magnuson & Chemick
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A detailed description of the outlier detection algorithms used to detect the specular
occurrences is given in the next scction.

6. Algorithms Studied

In our investigation we considercd four approaches to the outlier dctection problem.
Fox (1972) provided one of the carliest approaches 1o identifying outlicrs wn time scrics. His
was a pioncering paper which is often cited in the litcrature. Fox's major contribution was
to identify t.;o types of outliers which are referred to as (1) additive outlicrs and (2)
innovation .uiliers. A model which considers oanly additive outliers is referred 10 25 an AQ
modcl and one which considers only innovation outlicrs is referred to as an 10 modcl. These
modcls have bcen adopted by Manin and others in much of the subscquent work on robust
time scrics modeling and outlicr dciection.

The distinction made betwecen AO and 10 outliers is that the AO outlier is a unique
occurrence which has an additive cffect on a single obscrvation but does not ceffcct
subsequent observations, whercas the [0 outlier affects a particular obscrvation and all
subseguent observations. The specular occurrences should be modelled as AO outliers since
they have short duration and do not affect the magnitude of subsequent observations. On
occasion a specular occurrence may last for more than one time measurement interval. In
such cases it may be best 10 model the event as possible multiple AO outliers.

Fox's other contribution was to provide likelihood ratio tests for detecting an AO or an
10 outlier in a time series. Although this work has value, it is somewhat restrictive. First 1t
requires that the time series is stationary and well approximated by a low order
autorcgressive process. Fox states in the introduction "Throughout this paper, trend and
seasonal components arc assumed cither negligible or to have been climinated. The method
adopied to remove these components might affect the results in some way.” In fact our
signatures have significant polynomial trends and periodic components which need to be
removed first. Since the presence of the outliers can have an impact on the success of the
detrending algorithm it also has an affect on the ability of Fox's algorithm to detect the
outliers. This difficulty, which is more severe for some of the algorithms, is a problem
which is faced by all algorithms.

Fox's tests are designed to have maximum power (i. ¢. highest probability of detecting
an outlier) when the entire series has a single outlier (either AO or 10) and the location of
the outliers is known. It also can have practical utility when the locations of the outliers
are unknown. Unfortunately, its biggest weakness is that it is not designed for dealing witk
multiple outliers. Our preliminary investigations showed that masking was a serious
problem with Fox's test. Masking occurs when the presence of multiple outliers inhibits
parameter cstimation which in tum reduces the ability to differentiate outliers from “good”
data. For signatures with specular occurrences, multiple occurrences are quite common. For
this reason, Fox's test is not competitive with our sequential influence function test and
thus was dropped from the comparison.

Chernick et al. (1982) developed an influence function matrix for the autocorrelation
function of a stationary time series. The influence function for the correlation at lag k was
determined by analogy to the bivzariate correlation of the components of independent
random (wo - dimensional vectors as given in Gnanadesikan (1977). They showed through
simulations and some real data cxamples the practical value of this influence function
matrix for detecting multiple outliers in the time series data. Later Manin and Yohai (1986)
devised more general influence functions which are appropriate for correlated data.
Hampel's influence function really is meant to apply only to independent identically
distributed random wvariables or vectors.

Magnuson & Chernick
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Although Martin and Yohai (1986) provide a suitable general theory, it is difficult to
infer a practical influence function mecasure from their resulis. Lefrancois (1991) has
provided practical measures of influence for time seriecs. He provides thresholds for these
influence functions based on the assumption that the time serics is stationary and Gaussian,
In referring 10 carlier work on influence functions for time scries, Lefrancois states that
"almost ail were developed without recourse to gencral appropriate theory, and without
critical values for declaring an observation as over - influential or not. Cnly  Chernick ¢t
al. (1982) mentioned a threshold, but it does not correspond 10 the distribution theory of
their suggested mcasure.”

Actually Chernick et al. (1982) did derive thresholds based on the product standard
aormal distribution which is appropriate when onc is willing to assume the process is
Gaussian. They also derived the distribution for a summary test statistic which they called
the average squarcd influence function. This statistic has asymptotically a chi-squarc
distribution. They were, however, reluctant to apply the distribution theory to the real data
cxamples because they f{elt that the Gaussian assumptions were not justifiable.

It is importart to note that the formulas for influence funclions only require the
existence of certain moments. In the case of autocorrelations, we neced seccond moments.
Large values of the influence function will indicate outliers cven for many non-Gaussian
time series. Chernick et al. (1982) chose (0 use thresholds based on empirical
experimentation with the observed data. At this time bootstrap procedures could be used to
arrive at thresholds based on the observed time series, avoiding Gaussian assumptions.

We believe that the measures provided in Lefrancois (1991) are appropriate and
useful for detecting outliers in time series. The thresholds he derives are appropriate for
Gaussian processes but may not be appropriate otherwise.

Although Lefrancois states "We consider only the case of at most one over-
influential observation.”, he does demonstrate its use in paragraph 4 as a method for
detecting outliers (i.e. multiple outliers) in time series. Although influential observations
need not be crroncous or outliers, in practice they often arc anu we believe Lefrancois’
remarks ars overly cautious.

We consider in this paper Lefrancois’ sample influence measure which he denotes

SICj k. Let p and 62 denote the mean and the variance of a stationary time series Xi i=1,2,....n.
We define

Z; = (x-w)/a- Actually in practice, since p and 62 will be unknown, sample estimates
will be used in their place in computing Zj.

Lefrancois' SICj k., is the sample influence of observation i on the lag Kk
autocorrelation rg. From equation (2.4) in Lefrancois (1991) we approximate SIC; k by

SICix = (Zi Zink + Zi Zi - ZD /1 (1 - 22/ (n-1))

This is contrasted with the Chemick et al. (1982) measure which is

Cix=ZZy - %(212 +Zh) 0

Magnuson & Chernick 1}
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Notc that for large n the denominator in SICj k is closec to 1. Ignoring the dcnominator we
PSR . 2,2 . .
scc a great deal of similarities between the two cquations above. -1/2(L+Z7, ) in Gy is

about thc same as ‘Zizrk in SICj k and the term Z;Zi+k occurs in both cquations. The main
difference is the term ZiZi.x in SIC; x which docs not appcar in C; . Lefrancois points to
this missing term in Chemick et al. (1982). We bclieve that this point and thc ‘leavc-onc-
out’ interpretation of SICj k justifies the belicf that it is an improvement over Chermick et
al. (1982). Lefrancois (1991) computes a summary statistic QIC; which is a quadratic form
obtained from SICj k. This is similar to the average squarcd influcnce funcuion of Chernick
et al. (1982). To test for a single highly influcatial obscrvation, hc obtains Bonfcrronmi type
upper and lower bounds on the probability distribulion for the largest QIC; in the umc
serics. To detect multiple outlicrs this test can be applied scquentially (i.c. test the largest
and if it exceeds the threshold rcmove it and repeat the procedure on the time series with
that observation left out). The sequential procedure is continucd until no outlicrs remain
(i.c. the largest QICij no longer cxcceds the threshold). This procedure appecars (o have
worked well in the cxamplc of paragraph 4 in Lefrancois (1991) but masking may still bec a
problem with this approach.

In section 5, we derived Hampel's influence function at x for the variance of
independent identicaliy distributed observations from a distribution with finite second
moment. For a stationary time serics we interpret this result as the cffect an obscrvation x
will have on the variance of the time series (although strictly speaking the result does not
apply to correclated observations). Since specular occurrences have a large effect on the
variance of the signature, we cxpect that such an influence mcasure would be able to detect
these occurrenccs. This was bome out in Chemick and Magnuson (1989) and has been used
at NRC 10 edit simulated signatures since that time.

As we pointed out in Section 4, repeated significance testing provides the appropriate
framework for determining a threshold for our test statistic. Since the results do not appear
tractable, empirically defined thresholds were used. A better approach using bootstrap
hypothesis tests may be the subject of further research. Qur test is essentially to reject for

large values of Z,2 where Zi=(xj-p)/o as before. Iowever since m and s are unknown and

estimates are sensitive to outliers, they are replaced by X¢.1)and S%i-l) as defined earlier. This
is very important since it essentially removes the masking problem by truncating the data
and then adding back observations until the outliers are found. A similar approach to
Lefrancois' statistics might also help his algorithm even though it makes the distribution
theory intractable. Both our sequential influence function for variance algorithm and
Lefrancois' influence function for autoconelation are based on the fact that least squares
estimation is sensitive to outliers. So outliers or specular occurren.es will cause large
differences in estimates such as variance and autocorrelation. Measures which can estimate
this effect can therefore detect the specular occurrences.

Our naive intuition tells us that if we have an appropriate model for the "good” data,
then the outliers should be detected because they have a large residual (i. e. deviation of the
observed value from what the model expects). With least squares estimation, however these
outliers can have such a high influence on the model parameters that their residuals are
small! An alternative approach is to find estimation procedures which are insensitive to the
outliers (i.c. robust time series modelling) and then detect the outliers based on residuals
from the "robust” model. In recent years, motivated by results in robust rcgression
modeling, there have been a number of procedures devised to obtain robust estimates of the
parameters in a time series model. In order (o detect multiple outliers, we seek a procedure
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which doesn’t breakdown until many outlicrs are present. In robust regression the
repcated median algorithm of Siegel (1982) is an cxample of a procecdure with an asymptotic
breakdown point when 50% of the data are outliers. It achieves the maximum possibic
brecakdown value in the limit as the sample size gets larger and larger.

Of the available mecthods in the time series literature, the most promusing appears 1o
be the lcast median of squares algorithm of Leroy and Roussceuw. The procedure is to (it
robustly a low order autoregressive model to the statiopary timc scrics. Based on fitting
some detrended signatures without speculars, we decided 1o apply an autoregressive model
of the fourth order (AR(4)) 1o t*e data. It appears that it may be better 10 remove the
remaining scasonal components first. -

The least median of squares algorithm considers the square residuals just as does least
squares but instead of minimizing the sum of the squared residuals, it minimizes the median
of the entire set of squared residuals. The outliers can then producc large squarcd residuals
and have no cffect on the estimate since their squared residuals arc well above the median.
The procedure is conceptually simple but difficult to compute. The basic procedure is
described by Rousseccuw and Leroy (1987) pp 197-204. It is very compuler intcnsive and
tricks are provided to reduce the computation. For time series models a slight modification is
required. This is described on page 279 of Roussccuw and Leroy (1987). An example of the
successful application of the procedure is given on pages 279-284. After fitting the model,
the observations with large absolute residual are considered to be outliers. In the case of
specular occurrences, this test could be one-sided (i.c. only observations which are much
larger than the model prediction will be considered).

7. Results of Algorithm Comparisons
7.1) Detrending algorithms

The minimum window performed the best since it takes advantage of our apriori
knowledge that outliers are always large. The median window detrending algorithm
performance was worse for our special case, but it is more genecral since it makes no
assumptions about the direction of the outliers. The median window detrending algorithm is
recommended for general outiier detection. The Fourier series detrending algorithm  was
severely affected by outliers. Its performance was inferior.

7.2) Equal error rate as a fair scoring parameter

Since we are comparing the results of several combinations of different algorithms
we need a common scoring technique. The equal error rate was chosen as a fair ang
consistent scoring method for several reasons. Figure 2 is a schematic of how the equal
error rate is calculated. The histograms on the left in Figure 2 are the distributions of good
data and outliers. The outlier distribution tends to lie to the right of the good data because
the outliers tend to have higher intensity than the good data. The threshold figure 2a is
placed in an arbitrary position for purposes of explanation. Any data lying to the left of the
threshold is desigrated good data and everything to the right is designated as an outlier, A
type 1 error, an outlier mistakenly designated as good data, occurs for those outliers in the
tail of the distribution which lic 0 the left of the threshold. A type 2 error, good data
mistakenly labeled as an outlier, occurs for the good data in the tail of the distribution
which lie to the right of the threshold. Figure 2b is calculated by moving the threshold
through a range of values. If the threshold is arbitrarily placed 1o the left of both
distributions, all the data will be assumed to be outiiers and 100% of the good data will be
discarded (type 2 error). As the threshold is moved to the right, less of the good data will be
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discarded but morc outliers will be retained, type | errors incrcase while type 2 errors
decrcase.

Figure 2) Calculation of cqual error rate.

The exact placement of the threshold depends on how well the two different types of
errors can be tolerated. If outliers are cxtremely detrimental, the threshold should be
moved to the left as far as possible. On the other hand, if good data must be retained at all
costs, then the threshold should be moved to the right as far as possible. No matter where
the threshold is fixed, there is always a compromise between the two types of errors. A fair
compromise is to place the threshold where the two types of errors arc equal, thereby the
name “ecqual error rate”. This is a traditional placement when the detrimental effects of the
different types of errors are not known in advance.

7.3) Fox's algorithm

Since Fox's algorithm is not intended for multiple outliers, its performance was
expected 10 be poor due to the masking problem. The results were 43% ecqual error for the
minimum window detrending algorithm, 46% ecqual crror for the median window
detrending algorithm and 49% ecqual error for the Fourier filter detrending algorithm.

7.4) Sequential Influence Function

The performance for the Scquential Influence function was much better. The results

were 12% ecqual error for the minimum window detrending algorithm, 17% equal ecrror for *

the median window detrending algorithm and 30% ecqual error for the Fourier filter®
detrending algorithm. The main improvement was accomplished because of overcoming the
masking problem.

7.5) Sequential AR(1) Influence Function
A slight, but significant improvement resulted when a first order autoregressive

(AR) model was used. The results were a 9% cqual crror for the minimum window
detrending algorithm. The characteristic operating curve is plotted in Figure 3.
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Figure 3) The characteristic operating curve for the Sequenual
AR(1) influence function algorithm.

7.6) Lefrancois’ algorithm

Lefrancois' algorithm requires an intermediate step of calculating an influence
function SIC. An overly influential point in the time series will not only perturb the
influence function for the time point, it will also perturb the influence function of
adjacent points at different fags in what has been coined the “clothes-pin™ cffect. The
clothes pin shape is displayed in Table 1. The clothes-pin effect stands out when there is
only one outlier in a time serics. Even with only one outlier, however there are some
coincidences where a relatively small data point, like number 54 which is not an outlier,
can serendipitously have a large sum of squares and become suspicious.

Unfortunately, when several outliers arc present, the estimates of the
autocorrelation parameters are affected and the influence function are badly corrupted as
in Table 2.

The value of the influence function for point number 31 in Table 2 is relatively large, 1.42,
compared to the values for the two outliers at points number 23 and 27. There were other
outliers in this series which also corrupted the autoregressive parameter estimation.

Influence functions are also affected by large values in data which really have no °

outliers. Table 3 is an example of such a series. This series has a large oscillatory”
component which may or may not be adequately modeled by the fourth order
autoregressive process AR(4).

The overall performance for data with an arbitrary number of outliers is described
in Figure 4. The ecqual error operating point is 31% false acceptance and false rejection.
This is considerably worse than the 9% cqual error rate established by the sequential
influence function. The major difference is that in the Lefrancois algorithm, the
autorcgressive parameters were calculated using all the data and then the points with the
largest influence functions were removed. The opposite approach was taken with the
sequential influence function.
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Obs Data Lag Sumi/N
Num
1 2 ! 3 4
44 0.8625 -0.08 -0.18 -0.01 -0.17 0.11
45 1.1259 -0.44 -0.73 0.27 -0.20 0.16
46 0.0000 -0.09 -0.14 1.33 0.73 0.65
47 0.4048 0.27 0.14 0.22 -1.07 0.33
48 0.9925 -0.55 -0.90 -2.00 0.04 0.66
49 0.1732 0.56 =2.10 0.62 0.21 091
50 0.0000 -2.17 0.36 0.95 1.01 1.42
St 2.9560 *++} -2.41 L.81 -6,70 =2.13 9.50
52 0.5609 -0.43 0.20 0.07 0.09 0.82
53 0.0000 0.40 -3.42 1.62 1.30 2.60
54 0.6798 -0.01 -0.01 0.03 -0.01 5.1
55 0.8580 -0.29 -0.41 -0.14 0.75 2.14
56 0.0000 0.48 0.84 1.51 1.21 0.93
57 0.3332 0.69 0.53 0.40 0.77 0.45
58 0.5865 0.20 0.30 0.01 0.19
59 0.0665 1.32 1.51 1.20
60 0.0000 1.71 1.27
61 0.3876 1.46

Table 1) Lefrancois

Influence Functions for data with only one outlier at time point 51. The

"clothes-pin" effect is emphasized by the numbers which are bold and underlined SIC

values. The outlier is marked by ***,
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Obs Data Lag Sum?/N
Num
1 2 3 4

19 0.0302 0.32 0.30 -0.51 -0.45 0.24 |

20 0.0459 0.30 0.30 -0.41 -0.51 0.32

21 0.00s1 0.35 -0.51 0.3s5 0.35 0.13

22 0.0000 -0.48 0.31 0.37 0.35 0.15

23 1.2388 *** | -0.90 -1.38 -0.83 2.58 1.37

24 0.0402 -0.41 0.29 -0.49 0.28 0.23

25 0.0000 0.34 -1.46 0.39 0.37 0.61

26 0.0340 -0.50 0.29 -0.42 0.30 0.20

27 1.3696 *** | -0.97 -1.59 -0.89 2.57 2.52

28 0.0049 -0.56 0.31 0.36 0.34 0.24

29 0.0000 0.36 -0.62 0.37 -1.32 0.69

30 0.0428 0.31 0.30 -1.90 0.27 0.62

31 0.0291 0.32 -1.18 0.31 -1.59 1.42

32 0.0000 -1.33 0.31 -0.81 0.37 0.39

Table 2) Lefrancois Influence Functions with multiple outliers
Obs Data Lag Sum?/N
Num
1 3 4

27 1.1609 -0.35 1.10 -0.83 3.33 8.49
28 0.4309 -0.02 0.02 -0.17 -0.14 0.24
29 0.0000 0.08 -1.26 -1.79 -1.02 1.00
30 0.5672 -0.10 0.39 0.05 0.30 0.12
31 0.5351 0.29 -0.16 0.24 0.07 1.62
32 2.1514 -0.02 3.68 -4.80 6.72 10.65
33 0.0000 -3.90 -0.01 -1.24 0.71 2.29
34 1.9764 -1.83 7.69 -0.09 0.40 11.43
35 0.1699 -1.84 0.20 -1.00 -0.12 3.85
36 1.3120 -0.08 1.36 -0.86 4.67 16.70
37 0.5404 0.07 -0.03 0.28 -0.16 0.08
38 0.0000 -0.17 -1.49 0.93 -2.54 1.57

Table 3) Lefrancois Influence Functions - data with no outliers
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Figure 4) Operating Characteristic Curve for Lefrancois
Influence Function Outlier Detection Algorithm.

8. Human Experiment

In fact humans seem to be excelient outlier detectors, out performing all the
algorithms tested so far. Relles and Rogers (1977) showed that statisticians can subjectivcly
estimate a location parameter in the face of outliers quitc well. Similarly we demonstraic
that for time series signatures, engineers are good at identifying outliers. As an
experiment, 4 voluntcers were tested as outlier detectors. They were given 30 Infra-red
measurement time-scries with 61 time points in each serics, Appendix A contains four of
the 30 samples. The volunteers were told that there were outliers in some, but not all of the
series and asked to circle all points that they considered to be outliers. All four people have
engineering degrees. They had varying degrees of familiarity with time series. Figure 5
shows a comparison between the best computer algorithm and the volunteers. Not
surprisingly, the eaginecer with the most experience with time scries performed the best,
he correctly identified all but 2.6% of the outliers and ecrroncously mislabeled only 0.5 % of
the "good" data as outliers. The next most experienced engincer performed sccond best. She
missed 16.7% of the outliers but did not make any mistakes of throwing away good daia.
Figure S is a comparison between the operating characteristic curve of the best algorithm

and the volunteers. The operating characteristic curve is derived by varying the threshold -

on the outlier detection algorithm. There is a trade-off between threshold value and the
performance of the algorithm. On the one hand, if the threshold is lowered, more “good”
data will be falsely rejected and fewer outliers will be falsely accepted. On the other hand, if
the threshold is raised, less "good” data will be falsely rejected, but more outliers will be
falsely accepted.
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Figure 5) Comparing human outlier detectors and the best computers
algorithm. There is a trade off between false acceptance of outliers and false
rejection of "good” data. The volunteers who had a high acceptance rate wore

conservative in that they did not want to throw away any "good” data.

Four time-series plots arc included in Appendix A. These four plots are the scorcd
results from the best human outlier detector, they help explain the problems associated
with outlier detection.

The first plot, figure ZX-140.DAT, shows the problem of detecting outliers when the
time series is non-stationary. The tester corvectly identified all three outliers in this plot
with case, even though onec of the outliers lies on a steep siope. Computer detrending
algorithms are readily available for data with no outliers, but they are badly corrupted
when multiple outliers are present. This is a chicken and egg problem. If the data were
detrended, outlier detection would be simple, however, the outlier's presence corrupts the
detrending algorithm to the point where it is sometimes difficult to detect it

The second plot, figure ZX-141.DAT, shows the first step in the human's outlier
detection algorithm. He drew an envelope around the range of "good” data. This is somewhat
similar to whitening and detrending with a variable variance filter. The outliers arc readily
identifiable outside the expected envelope.

The third plot, figure ZX-131.DAT shows the second improvement from the human
detector. Once the large outliers were removed, he established the rough period of
oscillation in the time-serics and looked for patterns where the points were perturbed from
the sinusoid shape. Amazingly he only missed 1 outlier in the whole series.

Plot four, figure ZX-151.DAT almost tricked the best volunteer. Even though there are
no outliers in this time-serics, thc¢ modulation between the sampling and the oscillations in
the IR object produced large spikes which at first look like outliers. The volunteer
reconsidered them and rightfully said that "all OK, no outliers”. This shows the problem
with outlier detection, a variable adaptive detrending algorithm would be fooied by the last
signature.
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9. Conclusions

In conclusion, the Secquential AR(l) Influence Function preformed better than any
other computer algorithm on the data tested in this study, sec table 4.. The algorithm works
well, in pan, because the scquential nature of the algorithm avoids the masking problem
that happens when scveral outliers are present in the data.

Fox's Algorithm 43.0%
Lefrancois Influence Function 31.0%
Scquential  Influence Function 12.0%
Sequential AR(1) Influence Function 9.0%
Human volunteers 2.6%

Table 4) Summary of equal error, which is a
measure of the ability of each algorithm to
discriminate outliers from good data.

Due to massive data processing requircments and the need for real time outlicr
detection, it would be impractical to use humans as outlier detectors, even though they
easily outperfrrni 21l the computer algorithms. The human volunteer test was informative
for scveral reasons. It shows how well a computer algorithm could be expected to perform if
it could capture the expertise of a human. The study also helps illustrate two major problems
with IR signatures..

1) Humans can handle changes of slope where detrending algorithms have
difficulty. Many good detrending algorithms are available for data without corruption by
outliers. None that we know of work well when there are several outliers present. This is a
problem that should be looked into in more detail,

2) Scveral outliers mask each other so estimating influence function parameters can
be badly corrupted by the outliers. A better approach is to establish robust estimates of the
parameters and then test for influence.

Because the ecnemy has control of the IR signature, the underlying model of the
target IR time series should be established independent of outliers. There is great hope for
overcoming most of these problems and establishing an outlier detection algorithm which
is nearly as good as the human ecxpert once a good outlier resistant detrending algorithm is
developed.
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Appendix A - Four sample IR signaturcs used to test human ability to detect outliers.
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